以ARIMA模型为例介绍时间序列算法在python中是如何实现的,一下是应用Python语言建模步骤:
-- coding: utf-8 --
“””
Created on Mon Apr 2 16:45:36 2018
@author: houy
“”“
arima模型对时间序列的要求是平稳型
import pandas as pd
参数初始化7ku9
discfile = ‘arima_data.xlsx’
数据集见https://pan.baidu.com/s/1L2LWfOA8o7y5lFG2VnDdFQ 中arima_data.xlsx
读取数据,制定日期列为指标,Pandas自动将“日期”列识别为Datatime格式
data = pd.read_excel(discfile,index_col = 0)
print(data.head())
print(‘\n Data Types:’)
print(data.dtypes)
时序图
import matplotlib.pyplot as plt
plt.rcParams[‘font.sans-serif’] = [‘SimHei’] #用来正常显示中文标签
plt.rcParams[‘axes.unicode_minus’] = False #用来正常显示负号
data.plot()
plt.show()
自相关图
from statsmodels.graphics.tsaplots import plot_acf
plot_acf(data).show() #显示出很强的自相关性
平稳性检测
from statsmodels.tsa.stattools import adfuller as ADF
print(u’原始序列的ADF检验结果为:’,ADF(data[u’销量’]))