ARIMA时间序列分析-----Python实例(一周销售营业额预测)

本文通过Python实现ARIMA模型,详细讲解如何利用ARIMA对时间序列进行分析,包括数据预处理、平稳性检测、模型选择、模型检验及未来销售预测,以一周销售营业额为例。
摘要由CSDN通过智能技术生成

以ARIMA模型为例介绍时间序列算法在python中是如何实现的,一下是应用Python语言建模步骤:

-- coding: utf-8 --

“””
Created on Mon Apr 2 16:45:36 2018

@author: houy
“”“

arima模型对时间序列的要求是平稳型

import pandas as pd

参数初始化7ku9

discfile = ‘arima_data.xlsx’

数据集见https://pan.baidu.com/s/1L2LWfOA8o7y5lFG2VnDdFQ 中arima_data.xlsx

读取数据,制定日期列为指标,Pandas自动将“日期”列识别为Datatime格式

data = pd.read_excel(discfile,index_col = 0)

print(data.head())
print(‘\n Data Types:’)
print(data.dtypes)

时序图

import matplotlib.pyplot as plt

plt.rcParams[‘font.sans-serif’] = [‘SimHei’] #用来正常显示中文标签
plt.rcParams[‘axes.unicode_minus’] = False #用来正常显示负号
data.plot()
plt.show()

自相关图

from statsmodels.graphics.tsaplots import plot_acf

plot_acf(data).show() #显示出很强的自相关性

平稳性检测

from statsmodels.tsa.stattools import adfuller as ADF

print(u’原始序列的ADF检验结果为:’,ADF(data[u’销量’]))

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值